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Recall from part I:

G always denotes a (Hausdorff) topological group with
identity eG. NG denotes a base of symmetric identity
neighborhoods.

Sa(G), the Samuel compactification of G, is the set of near
ultrafilters on G, maximal p ⊆ P(G) with the property that
for any F ∈ [p]<ω and U ∈ NG, we have

⋂
S∈F SU 6= ∅.

We set NS = {p ∈ Sa(G) : S 6∈ p} and
CS = {p ∈ Sa(G) : S ∈ p}. The topology on Sa(G) given by
basis {NS : S ⊆ G not dense} is compact Hausdorff.

G acts on Sa(G) in the natural way. Any minimal subflow
of Sa(G) is isomorphic to the universal minimal flow M(G).
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Let’s try to describe minimal subflows of Sa(G) in near
ultrafilter language. First, what about closed subsets? In βN,
1-1 correspondence between closed subsets and filters on N...

Definition

A near filter on G is any Q ⊆ P(G) \ {∅} satisfying:

1 G ∈ Q.

2 If F ∈ [Q]<ω and U ∈ NG, then
⋂

S∈F SU ∈ Q.

3 If S ⊆ G satisfies SU ∈ Q for every U ∈ NG, then S ∈ Q.

Fact (Exercise 1)

There is a 1-1 correspondence between closed subsets of Sa(G)
and near filters on G.
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When does CS ⊆ Sa(G) contain a subflow?

Definition

Call S ⊆ G thick if for every F ∈ [G]<ω, we have⋂
f∈F Sf

−1 = ∅. Equivalently, iff for every F ∈ [G]<ω, there is
g ∈ G with gF ⊆ S.

Call S ⊆ G pre-thick if for every U ∈ NG, SU is thick.

Fact (Exercise 2)

CS ⊆ Sa(G) contains a subflow iff S ⊆ G is pre-thick. In
particular, S is pre-thick iff the collection {Sg : g ∈ G} has the
near FIP.
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Theorem

M ⊆ Sa(G) is a minimal subflow iff QM is a near filter which is
maximal with respect to all members being pre-thick.

Call these maximal pre-thick near filters.

Proof sketch.

If Q is a near filter and some S ∈ Q is not pre-thick, then CS

does not contain a subflow, so also
⋂

S∈QCS cannot contain a
subflow.

If Q is a near filter all of whose members are pre-thick, first
note that

⋂
S∈QCS =

⋂
S∈Q,U∈NG

CSU . Right hand side gives a
directed intersection of compact sets containing subflows.
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Now suppose K is a Fräıssé class of L-structures (relational).

Definition

Fix L-structures A ≤ B ≤ C and 0 < r < ω. We write
C→ (B)Ar if whenever γ : Emb(A,C)→ r is a coloring, there is
x ∈ Emb(B,C) with |{γ(x ◦ f) : f ∈ Emb(A,B)}| = 1.

We say that A is a Ramsey object if for every A ≤ B ∈ K and
0 < r < ω, there is B ≤ C ∈ K such that C→ (B)Ar . K has the
Ramsey property if every A ∈ K is a Ramsey object.

Fact (Exercise 3)

In the definition of RP, equivalent to only consider r = 2.
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Examples of K with the Ramsey Property:

finite linear orders (Ramsey 1930)

finite linearly ordered graphs (Abramson-Harrington 1978)

finite linearly ordered relational structures defined by
forbidding a class of finite irreducible substructures
(Nešetřil-Rödl 1983)

finite anti-lexicographically ordered Boolean algebras (not
relational) (Graham-Rothschild 1971)
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(Nešetřil-Rödl 1983)

finite anti-lexicographically ordered Boolean algebras (not
relational) (Graham-Rothschild 1971)

Andy Zucker BRD dynamics II



Examples of K with the Ramsey Property:

finite linear orders (Ramsey 1930)

finite linearly ordered graphs (Abramson-Harrington 1978)

finite linearly ordered relational structures defined by
forbidding a class of finite irreducible substructures
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Let K = Flim(K). For A ∈ K, write EmbA := Emb(A,K).

Definition

Given A ∈ K, we call T ⊆ EmbA thick if for any B ∈ K with
A ≤ B, there is x ∈ EmbB with x ◦ Emb(A,B) ⊆ T .

Fact (Exercise 4)

A ∈ K is a Ramsey object iff for every B ∈ K, 0 < r < ω, thick
T ⊆ EmbA, and coloring γ : T → r, there is x ∈ EmbB with
|{γ(x ◦ f) : f ∈ Emb(A,B)}| = 1.

Hence A ∈ K is a Ramsey object iff the collection TA of thick
subsets of EmbA is a coideal.
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Now set G = Aut(K). Recall that given A ∈ [K]<ω, we write
UA = Stab(A), and we identify G/UA with EmbA

If S ⊆ G, identify SUA with {s|A : s ∈ S} ⊆ EmbA. Note that
SUA ⊆ G is thick iff SUA ⊆ EmbA is.

Recall that we have Sa(G) = lim←−βEmbA.

Theorem (Kechris-Pestov-Todorčević 2005)

M(G) is a singleton, i.e. G is extremely amenable, iff K has the
Ramsey Property.

Of course, this happens exactly when Sa(G) has a fixed point...
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M(G) is a singleton, i.e. G is extremely amenable, iff K has the
Ramsey Property.

Of course, this happens exactly when Sa(G) has a fixed point...

Andy Zucker BRD dynamics II



Now set G = Aut(K). Recall that given A ∈ [K]<ω, we write
UA = Stab(A), and we identify G/UA with EmbA

If S ⊆ G, identify SUA with {s|A : s ∈ S} ⊆ EmbA. Note that
SUA ⊆ G is thick iff SUA ⊆ EmbA is.

Recall that we have Sa(G) = lim←−βEmbA.

Theorem (Kechris-Pestov-Todorčević 2005)

M(G) is a singleton, i.e. G is extremely amenable, iff K has the
Ramsey Property.

Of course, this happens exactly when Sa(G) has a fixed point...

Andy Zucker BRD dynamics II



Now set G = Aut(K). Recall that given A ∈ [K]<ω, we write
UA = Stab(A), and we identify G/UA with EmbA

If S ⊆ G, identify SUA with {s|A : s ∈ S} ⊆ EmbA. Note that
SUA ⊆ G is thick iff SUA ⊆ EmbA is.

Recall that we have Sa(G) = lim←−βEmbA.

Theorem (Kechris-Pestov-Todorčević 2005)
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Proof sketch (Z. 2016).

Suppose K has the Ramsey Property. Fix finite A0 ⊆ A1 ⊆ · · ·
with

⋃
n<ω An = K. Write Embn, Un, Tn, etc. RP tells us that

each Tn is a coideal.

Inductively define pn ∈ βEmbn as follows. Let p0 ⊆ T0 be any
ultrafilter.

If thick ultrafilter pn has been defined, first form the filter
qn+1 = 〈{x ∈ Embn+1 : x|An ∈ S} : S ∈ pn〉. Then qn+1 ⊆ Tn+1

is a thick filter, and extends to an ultrafilter pn+1 ⊆ Tn+1.

Define p = {S ⊆ G : ∀n < ω (SUn ∈ pn)}. Then p ∈ Sa(G) and
consists entirely of pre-thick sets.
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For the other direction, let’s think a bit more about the
negation of RP.

Definition

Given A ∈ K, S ⊆ EmbA is syndetic if EmbA\S is not thick.

Given 0 < r < ω, a coloring γ : EmbA → r is syndetic if
γ−1({i}) is syndetic for every i < r.

Fact (Exercise 5)

If K does not have RP, then for some A ∈ K, there is a syndetic
2-coloring of EmbA. If γ ∈ 2EmbA is a syndetic coloring and G
acts on 2EmbA via (δ · g)(f) = δ(g ◦ f), then γ ·G is a G-flow
with no fixed points.
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A natural weakening of the Ramsey Property:

Definition

A ∈ K has finite small Ramsey degree if there is tA < ω such
that for any B ∈ K with A ≤ B, 0 < r < ω, and coloring
γ : EmbA → r, there is x ∈ EmbB with
|{γ(x ◦ f) : f ∈ Emb(A,B)}| ≤ tA. The least such tA is called
the small Ramsey degree (SRD) of A.

The definition can be completely finitized, but we go the other
way: A has SRD tA iff for any 0 < r < ω and coloring
γ : EmbA → r, there is I ⊆ r with |I| ≤ tA and γ−1(I) thick.

In particular, there is a thick filter on EmbA corresponding to a
finite closed subset of βEmbA of size exactly tA.
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Theorem (Z. 2016)

The following are equivalent.

1 M(G) is metrizable.

2 K has finite small Ramsey degrees.

3 K admits a pre-compact, reasonable, minimal expansion
class with the RP.

In this case, If M ⊆ Sa(G) = lim←−βEmbA is any minimal
subflow and A ∈ [K]<ω, then |{p|A : p ∈M}| = tA.

(3)⇒ (1) appears in KPT. (1)⇒ (2) follows from
considerations on the previous slide. For (2)⇒ (3) we present a
variant of a simpler proof due to Nguyen Van Thé.
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Andy Zucker BRD dynamics II



Theorem (Z. 2016)

The following are equivalent.

1 M(G) is metrizable.

2 K has finite small Ramsey degrees.

3 K admits a pre-compact, reasonable, minimal expansion
class with the RP.

In this case, If M ⊆ Sa(G) = lim←−βEmbA is any minimal
subflow and A ∈ [K]<ω, then |{p|A : p ∈M}| = tA.

(3)⇒ (1) appears in KPT. (1)⇒ (2) follows from
considerations on the previous slide. For (2)⇒ (3) we present a
variant of a simpler proof due to Nguyen Van Thé.
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Definition

Given A ≤ B ∈ K and finite colorings γA, γB of EmbA,EmbB,
respectively, we say γA � γB iff whenever f ∈ Emb(A,B) and
x, y ∈ EmbB satisfy γB(x) = γB(y), then γA(x ◦ f) = γB(y ◦ f).

A rephrase of Ramsey degree: A has Ramsey degree tA if this
is least so that for any finite coloring γ of EmbA, there is
γ′ ∈ γ ·G which takes at most tA values.

In particular, if A ∈ K has small Ramsey degree tA, then there
is a syndetic tA-coloring of EmbA.
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Fact ((2)⇒ (3) of theorem)

If each A ∈ K has finite small Ramsey degree tA, then there are
{γA : A ∈ [K]<ω} with each γA a syndetic tA-coloring and with
γA � γB whenever A ≤ B.

Key idea: Any coloring in the orbit closure of a syndetic
t-coloring is still a syndetic t-coloring.

Start with any collection {γ0A : A ∈ [K]<ω} of syndetic
tA-colorings. Enumerate all pairs from [K]<ω with A ≤ B.
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If colorings γnA are determined, we now handle An ≤ Bn. Let δ
be the finite coloring of EmbBn formed using all information
from γnBn

and γnAn
. Find a sequence (gk)k<ω from G such that

both of the following:

For every A ∈ [K]<ω, limk(γnA · gk) exists.

limk(δ · gk) := δ′ exists and takes at most tBn values.

Note that δ′ depends only on γn+1
Bn

. It follows that

γn+1
Bn
� γn+1

An
.

Let (γA)A∈[K]<ω ∈
∏

A∈[K]<ω t
EmbA
A be any limit point of the

sequence (γnA)A∈[K]<ω . Each γA is in γ0A ·G, so is tA-syndetic.
As � is a closed condition, we get the result.
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